On Strong Interaction Symmetries Based on Simple Lie Groups
نویسندگان
چکیده
منابع مشابه
Remarks on random walks on semi simple Lie groups
© Mémoires de la S. M. F., 1977, tous droits réservés. L’accès aux archives de la revue « Mémoires de la S. M. F. » (http:// smf.emath.fr/Publications/Memoires/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impress...
متن کاملSEMINAR ON LIE GROUPS 1. Lie Groups
Example 1.3. (R,+) Example 1.4. S or T n = S × ...× S Example 1.5. Gl (n,F) ⊆ F, where F = R or C Example 1.6. E3 = isometries of R (2 connected components) Let the orthogonal group O3 < E3 be the subgroup that fixes the origin, and let the special orthogonal group SO (3) = SO3 < O3 be the orientation-preserving elements of O3. Visualizing SO (3): Let u be a vector of length l in R, correspondi...
متن کاملOn the Twisted K-Homology of Simple Lie Groups
We prove that the twisted K-homology of a simply connected simple Lie group G of rank n is an exterior algebra on n − 1 generators tensor a cyclic group. We give a detailed description of the order of this cyclic group in terms of the dimensions of irreducible representations of G and show that the congruences determining this cyclic order lift along the twisted index map to relations in the tw...
متن کاملHarmonic Functions on Discrete Subgroups of Semi - Simple Lie Groups
A description of the Poisson boundary of random walks on discrete subgroups of semi-simple Lie groups in terms of geometric boundaries of the corresponding Riemannian symmetric spaces is given. Let G be a discrete group, and { a probability measure on G. A function f on G is called-harmonic if f(g) = P f(gx) (x) 8 g 2 G. The Poisson boundary of the pair (G;) is the probability space (?;) with a...
متن کاملTranslation-invariant Cones of Functions on Semi-simple Lie Groups
Introduction. Originally, the phrase harmonic analysis had a function-theoretic meaning, referring to the decomposition of a function into exponentials. In the current interpretation, particularly in connection with noncommutative groups, the term refers not to functions but to representations, and harmonic analysis is regarded as part of the theory of group representations. This shift in inter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Progress of Theoretical Physics
سال: 1963
ISSN: 0033-068X
DOI: 10.1143/ptp.30.915